
Learn CircuitPython
using the

Adafruit Trinket M0

PRESENTED BY RICHARD GOWEN (@alt_bier)

Created for BSidesDFW 2020 HHV

This Slide Deck Is Available at https://altbier.us/circuitpython/

What is CircuitPython?

• CircuitPython is a programming language designed to simplify

experimenting and learning to code on low-cost microcontroller boards.

• CircuitPython is based on the Python programming language.

• Python is a widely used high level language that is easier to read, write and

maintain than low level languages like C. It supports modules and packages, has

a built-in interpreter (which means no compiling), and is open source.

• CircuitPython adds hardware support to all these great features.

• If you already have Python knowledge, you can easily apply that to

using CircuitPython. If you don’t, it's simple to get started!

What is the Adafruit Trinket M0?

• The Adafruit Trinket M0 is a tiny microcontroller board

that has been designed to work with CircuitPython.

• The Trinket is a hardware development board like an

Arduino and can even run Arduino code.

• It comes shipped with CicuitPython firmware installed.

So when you plug it in it will show up as a very small

disk drive with some files including main.py on it.

• Simply edit main.py with python code. No IDE required.

Specs:

• Processor: Atmel ATSAMD21E18

32-bit 48MHz Cortex M0+

• Flash: 256 KB

• RAM: 32 KB

• Native USB Support

• Support for both Arduino IDE

and CircuitPython

• 5 GPIO Pins

• Analog input on 3 pins and true

analog output on 1pin

• PWM output on 3 pins

• Capacitive touch sensors on 3 pins

Adafruit and CircuitPython Resources

• The Adafruit website https://www.adafruit.com/ is where

you will find the documentation and other resources for their products.

• You can purchase a Trinket M0 here:

https://www.adafruit.com/product/3500

• Trinket M0 Documentation:
https://learn.adafruit.com/adafruit-trinket-m0-circuitpython-arduino/

• The CircuitPython website https://circuitpython.org/ is a

great resource for documentation and software and example code.

ELECTRONICS 101

Working with hardware development boards such as the Adafruit Trinket M0 is

easier if you have a basic knowledge of electronics concepts.

This presentation will not provide that knowledge. However, I have put together

a separate presentation that does.

You can find my electronics overview presentation here:

https://altbier.us/electronics/

Mu Editor Software

While an Integrated Development Environment is not required to work with

CircuitPython (any editor will work), Mu is a simple code editor that works with the

Adafruit CircuitPython boards. It has a built-in serial console, so you can get

immediate feedback from your board's serial output.

You can download it from https://codewith.mu/ It is available for the

Windows, Linux, MacOS, and Raspberry Pi operating systems.

Mu Editor Software

The first time you start Mu, you will be prompted

to select your 'mode' - you can change this later.

If you are going to use Mu for the Labs presented

here, you should select ‘Adafruit CircuitPython’.

Mu attempts to auto-detect your board, so plug in

your Trinket M0 device via USB and make sure it

shows up as a drive named CIRCUITPY before

starting Mu.

Once your device is plugged in and Mu is started

you are ready to write some code!

Serial Monitor

To view the serial output of the Trinket M0 or any

CircuitPython device you’ll need a serial monitor.

In the Mu editor program there is a serial monitor built

in that can be launched by clicking the ‘Serial’ button.

If you’re not using that software, there are other ways

to monitor the serial output.

Look up the COM port number that your PC assigned

to the Trinket when you connected it.

Use a terminal program that supports serial connections

(like PuTTY) and configure it to connect to the COM

port at 9600 baud.

Connecting the Trinket M0

When you connect the Trinket M0 to your machine via USB is should open

a small drive named CIRCUITPY.

This drive is where you will place your code and libraries.

It comes installed with a main.py file and some basic library files in a lib

directory which are running demo code that will color cycle the on-board

DotStar LED.

Verify the Trinket M0 Firmware Version
There are several versions of CircuitPython firmware available, and the library files are not

compatible between major versions (e.g. 2.x, 3.x, 5.x, 6.x, etc.)

So, you should verify the version of CircuitPython firmware loaded on your Trinket M0

before you start working with it.

This is easily done by connecting it and opening a file named boot_out.txt in the root of the

CIRCUITPY drive.

This file will contain a line of text that shows the CircuitPython version.

Note that my Trinket M0 came shipped with version 3.1.1 which I want to upgrade.

Upgrading the Trinket M0 Firmware
To update the firmware is a fairly simple process.

• Download the firmware file from https://circuitpython.org/board/trinket_m0/

• Click the ‘Download .UF2 Now’ button to download the latest stable firmware version.

• Note: The latest stable version at the time of this writing is 5.3.1 which is what we will use in these Labs.

• Connect the Trinket M0 which will open a USB drive called CIRCUITPY.

• Optionally back up any .py files and the lib directory to your machine.

• Click the Reset button on the trinket twice.

• Not like a mouse Double-click, but more like Click-pause-Click.

• You should see the DotStar LED turn green and a new disk drive appear called TRINKETBOOT.

• Copy the .uf2 extension firmware file (e.g. adafruit-circuitpython-trinket_m0-en_US-5.3.1.uf2) to the

TRINKETBOOT drive.

• The Red LED will flash then the TRINKETBOOT drive will disappear and the CIRCUITPY drive will reappear.

• The main.py file and library files in lib may be deleted in this process.

That’s it, the trinket is now running the new firmware for the Circuit Python version that you copied to it.

CircuitPython Library Files

Whether you recently upgraded or just want to create a new project

with your current version of CircuitPython, you will want to download the

library files for the version you are working with.

Given the small amount of storage available it is important to only add

the libraries you need to your device.

You'll want the compiled library files available on your PC to allow you

to keep file size down and copy only what you need when you need it.

The library file bundle package is also a good source of example code

covering various tasks.

Downloading CircuitPython Library Files

You can find the library file bundle packages for recent versions of

CircuitPython here: https://circuitpython.org/libraries

Choose the bundle that corresponds with your version and extract it.

Now just copy any file you need from the lib directory.

Testing Trinket After Firmware Upgrade

When you upgrade the CircuitPython firmware it may delete your python

code and library files, or worse leave them in place and non-functional. So,

its best to clear any files and load new ones to test.

There are a few empty files that should be left on the CIRCUITPY drive since

they are there to prevent your PC from storing hidden files on the tiny drive.

These are:

• .metadata_never_index

• .Trashes

• .fseventsd

• .fseventsd/no_log

The lib directory can remain but should be empty.

Testing Trinket After Firmware Upgrade
Create a file named main.py using Mu or your

favorite editor.

In the main.py file add the code shown on the right.

This simple code will test that things are working.

This code should blink the small Red LED in the corner

of the board and print some text to serial output.

It will also cause the RBG LED in the center of the

board to light solid Green indicating that it is

running a program without error.

If the Red LED is not blinking or the RBG LED is not

solid Green, then there is a problem.

• Check that your indentation is consistent in main.py

(Python is strict about indentation)

import board

import digitalio

import time

Assign pin D13 (On-Board Red LED)

rled = digitalio.DigitalInOut(board.D13)

Set pin IO Direction

rled.direction = digitalio.Direction.OUTPUT

Main Loop

while True:

Serial Output

print("Hello, CircuitPython!")

Set LED state to ON

rled.value = True

Pause for 1 second

time.sleep(1)

Set LED state to OFF

rled.value = False

Pause for 1 second

time.sleep(1)

Troubleshooting Problems
The Trinket M0 and it’s CircuitPython

firmware will attempt to help you

troubleshoot problems.

The DotStar RGB LED will display a status

color and flash an error code as shown

on the right.

Error messages are sent via serial output.

So a serial monitor will allow you to see

detailed error messages that will help

you correct the problem.

Note: The Mu editor has a built-in serial

monitor that can interface with the Trinket

M0 and display these messages.

The Trinket M0 uses the DotStar RGB LED on the board to

indicate the status of CircuitPython.

Here is how to read it:

• steady GREEN: main.py is running

• pulsing GREEN: main.py has finished or does not exist

• steady YELLOW at start up (4+) Waiting for a reset to

indicate that it should start in safe mode

• pulsing YELLOW: In safe mode – (crash & restart)

• steady WHITE: REPL is running

• steady BLUE: boot.py is running

Colors with multiple flashes following indicate a Python

exception and then indicate the line number of the

error. The color of the first flash indicates the type

of error:

• GREEN: IndentationError

• CYAN: SyntaxError

• WHITE: NameError

• ORANGE: OSError

• PURPLE: ValueError

• YELLOW: other error

These are followed by flashes indicating the line

number. WHITE flashes are thousands' place, BLUE are

hundreds' place, YELLOW are tens' place, and CYAN are

one's place.

Integrating Circuits with the Trinket M0

So far, we haven't connected our Trinket to anything. To have it control

external circuits it must be integrated into those circuits. To do this we will

connect our external circuits to pins on the Trinket.

In addition to internal pins (such as those for the onboard LEDs), the Trinket

has ten external physical pins that we will use with our external circuits.

There are five general purpose input / output (GPIO) pins labeled 0 thru 4.

These each have different features that should be considered (e.g. digital,

analog, PWM, touch sensor, etc.)

The other five pins include a voltage input pin labeled ‘Bat’, two voltage

output pins labeled ‘USB’ (5V) and ‘3V’, a ground pin labeled ‘Gnd’, and a

reset pin labeled ‘Rst’.

Pinout of the Adafruit Trinket M0

This pinout diagram details which pins have which features.

Working with CircuitPython on the Trinket M0
CircuitPython is based on Python 3. So, most things that work with Python 3 will

work with CircuitPython.

CircuitPython libraries are separate files designed to work with CircuitPython code.

CircuitPython programs require a lot of information to run. CircuitPython is so simple

to use because most of this information is processed in the background and stored in

libraries. Some libraries are built into CircuitPython. Others are downloaded and

stored on your CIRCUITPY drive in a folder called lib.

CircuitPython looks for a code file on the board to run in the root of the CIRCUITPY

drive. There are four options: code.txt, code.py, main.txt and main.py. CircuitPython

looks for those files, in that order, and then runs the first one it finds.

Any editor will work to modify the code. Whether you are editing the file directly

on the CIRCUITPY drive or copying a code file there, when you save/copy the file it

will be immediately run on the board since the board is looking for changes.

Python Quick Reference

CIRCUITPYTHON TRINKET PROJECTS
This next section will outline some CircuitPython projects using the Trinket M0.

These projects will be centered around two different physical circuit layouts with

several CircuitPython code blocks for each.

• Adafruit Trinket LED Control – Lab HHV2020_04

• Blink the on-board Red LED

• Blink both external and on-board LEDs

• Fade external LED on/off using PWM

• Turn LEDs on/off using a Tactile Switch

• Adafruit DotStar RGB LED and Touch Sensor – Lab HHV2020_05

• Blink the on-board DotStar RGB LED

• Color Cycle the on-board DotStar RGB LED

• Use Touch Sensor to Control an external LED

• Use Touch Sensor to Color Change the on-board DotStar RGB LED

The Lab reference numbers refer to the BSidesDFW Hardware Hacking Village Videos

which can be accessed here: https://altbier.us/bsidesdfwHHV2020/

ADAFRUIT TRINKET LED CONTROL
Schematic

LAB HHV2020_04

ADAFRUIT TRINKET LED CONTROL

Physical Layout

Wire up a circuit as shown in the schematic and

physical layout.

Strip Board Connection Details

• Trinket – I17-21 and J17-21

• Resistor 100 Ohm – D19 and H19

• LED

• Anode – C19

• Cathode – B19

• Wire – A19 and VCC19

• Wire – E18 and VCC18

• Switch SPST 4 Pin

• Pin A(1) – N14

• Pin B(1) – Q14

• Pin C(2) – N16

• Pin D(2) – Q16

• Wire – R16 and N21

• Wire – M14 and H20

• Resistor 10K Ohm – E20 and B20

• Wire – A20 and VCC20

LAB HHV2020_04

Components:

• 1x Resistor 100 Ohm

• 1x Resistor 10K Ohm

• 1x LED 5mm

• 1x Tactile Switch SPST 4pin

ADAFRUIT TRINKET LED CONTROL
Blink the on-board Red LED

This simple bit of code will blink the on-board Red LED. This is the same

code shown on the ‘Testing Trinket…’ slide.

Let's walk through what it is doing:

Lines 1-3 import the library files we will use. These libraries are built into

CircuitPython so they will not be in the lib directory.

Line 5 assigns pin Digital-13 to an object named rled. This is the pin

associated with the Red LED.

Line 7 sets the IO pin direction to OUTPUT

Line 9 starts the main While loop that will run indefinitely.

Line 11 prints a string to the serial output. You can see this text output

with a serial monitor.

Line 13 sets the value of rled to True which turns ON the LED.

Line 15 pauses the program for 1 second

Line 17 sets the value of rled to False which turns OFF the LED.

Line 19 pauses the program for 1 second

LAB HHV2020_04

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT TRINKET LED CONTROL
Blink both external and on-board LEDs

This simple bit of code is like the previous code, adding an

external LED. It will blink both the on-board and external LEDs

Let's walk through what it is doing:

Lines 1-3 import the library files we will use.

Line 5 assigns pin D13 (on-board LED) to an object named rled.

Line 7 assigns pin D4 (external LED) to an object named led4.

Line 9-10 sets the IO pin direction to OUTPUT for both pins

Line 12 starts the main While loop that will run indefinitely.

Line 14 sets the value of both LEDs to True which turns them ON.

Line 16 prints strings and values to the serial output.

Line 18 pauses the program for 1 second

Line 20-24 repeats the set/print/pause turning the LEDs OFF.

LAB HHV2020_04

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT TRINKET LED CONTROL

Fade external LED on/off using PWM

In the previous code we defined a digital output pin for our LED.

In this code we define a PWM (Pulse Width Modulation) output pin

which mimics analog allowing the LED to be in between ON or OFF.

Let's walk through what's different:

• We import the pulseio instead of the digitalio library.

• We assign the led4 object to a PWMOut which is output only so

we don’t set a direction.

• We use for loops with a range of 100. The first loop iterates up

to fade the LED ON, the second iterates down to fade it OFF.

• Instead of setting a value of True(HIGH) or False(LOW) we are

setting the duty_cycle which represents the percentage of time

the pin will be in the HIGH state. The duty_cycle is a 16-bit

number (0 to 65535).

LAB HHV2020_04

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT TRINKET LED CONTROL

Turn LEDs on/off using a Tactile Switch

This code will read the state of a tactile switch (button) and use that

to control the LEDs turning them on when pressed.

We will use the button value in two ways, as a conditional check

and as a raw value to send to an object (an LED).

Let’s look at the key items in this code:

• Assign rled and led4 pins as digital output

• Assign sw1 pin as digital input

• Read in the sw1 value and print it to serial

• Use an if conditional statement to check if sw1 is True and set

rled to True (LED ON) if it is, else set it to False (LED OFF)

• Set led4 to be equal to sw1 value (True or False, ON or OFF)

LAB HHV2020_04

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR
Schematic

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Physical Layout

Wire up a circuit as shown in the schematic and

physical layout.

Strip Board Connection Details

• Trinket – I17-21 and J17-21

• Resistor 100 Ohm – K20 and O20

• LED

• Anode – P20

• Cathode – Q20

• Wire – R20 and VCC20

• Bare Wire – K19 and O19

LAB HHV2020_05

Components:

• 1x Resistor 100 Ohm

• 1x LED 5mm

• 1x Bare Wire (for touch)

CircuitPython Library Files Needed

The code used in the following examples will require some library files that

are not built into CircuitPython.

You can find the library file bundle packages for recent versions of

CircuitPython here: https://circuitpython.org/libraries

Download the bundle for the version you are working with (5.x) and extract it

in a directory on your PC.

Locate these two library files on your PC and copy them to the lib directory

on the CIRCUITPY drive:

• adafruit_dotstar.mpy

• adafruit_pypixelbuf.mpy

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Blink the on-board DotStar RGB LED

This code will blink the on-board DotStar RGB LED. This

uses some library files not included in CircuitPython.

Let’s look at the key items in this code:

• Import adafruit_dotstar library

• It calls the library adafruit_pypixelbuf

• Assign dot object data pin APA102_SCK, clock pin

APA102_MOSI, pixel_num=1, and brightness=0.2

• Note: The board lib defines pins D7 & D8 as different names

• Set the Value of dot[0] to Red, Green, Blue, then OFF

using a value list formatted (R,G,B) with values 0-255

• Pause briefly between color changes.

LAB HHV2020_05

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Color Cycle the on-board DotStar RGB LED

This code will Color Cycle the on-board DotStar RGB

LED.

Let’s look at the key items in this code:

• Import adafruit_dotstar library

• Assign dot object data pin APA102_SCK, clock pin

APA102_MOSI, pixel_num=1, and brightness=0.2

• Define a function wheel(pos) that will take an integer

and return a list formatted (R,G,B) with values 0-255

• Set dot[0] to the value that wheel(i) returns

• Increment the var i keeping it between 0-255

• Pause briefly between color changes.

LAB HHV2020_05

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Use Touch Sensor to Control an external LED

This code will use a Capacitive Touch Sensor to control and

external LED turning it on when touched.

Let’s look at the key items in this code:

• Import touchio library

• Assign touch object to TouchIn analog pin A0

• Read the value of touch

• Use an if conditional statement to test for a touch.

• Given that the touch pin is analog it will register values all the

time and we must set our test value higher than ambient values

• If a touch is registered set led5 to True turning it ON

• Pause very briefly between loops.

LAB HHV2020_05

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Use Touch Sensor to Color Change the DotStar RGB LED

This is the same code we used earlier to Color Cycle the

DotStar RGB LED with a slight modification to add touch.

The color will now only cycle when touched staying steady

at its current color when not touched.

Let’s look at the key items added to the existing code:

• Added the touchio library import

• Assign touch object to TouchIn analog pin A0

• Read the value of touch

• Use an if conditional statement to test for a touch and

increment the iteration variable i only if touched

• Pause very briefly between loops.

LAB HHV2020_05

This Code Is Available Here: https://github.com/gowenrw/BSidesDFW_2020_HHV/

THANK YOU

I hope you enjoyed this presentation and learned something from it.

-- @alt_bier

This Slide Deck – https://altbier.us/circuitpython/

Code – https://github.com/gowenrw/BSidesDFW_2020_HHV/

