g

_O

1§ fardwdre kacrino viliaoe

Learn CircuitPython
using the
Adafruit Trinket MO

@
PRESENTED BY RICHARD GOWEN (@alt bier)
/;) Created for BSidesDFW 2020 HHV
)

This Slide Deck Is Available at

O_/ 0?0/0

1\\5 What is CircuitPython?

® ® CircuitPython is a programming language designed to simplify

experimenting and learning to code on low-cost microcontroller boards.

® CircuitPython is based on the Python programming language.

l ®* Python is a widely used high level language that is easier to read, write and
maintain than low level languages like C. It supports modules and packages, has

a built-in interpreter (which means no compiling), and is open source.

/D ® CircuitPython adds hardware support to all these great features.
O

®* If you already have Python knowledge, you can easily apply that to
using CircuitPython. If you don't, it's simple to get started!

1\\5 What is the Adafruit Trinket MO?

O ®* The Adafruit Trinket MO is a tiny microcontroller board

that has been designed to work with CircuitPython.

® The Trinket is a hardware development board like an

l Arduino and can even run Arduino code.

® It comes shipped with CicuitPython firmware installed.
T /) So when you plug it in it will show up as a very small
@

disk drive with some files including main.py on it.

* Simply edit main.py with python code. No IDE required.

O

1
[7

LN
\

Adafruit and CircuitPython Resources

®* The Adafruit website is where

you will find the documentation and other resources for their products.

® You can purchase a Trinket MO here:

® Trinket MO Documentation:

® The CircuitPython website is d

great resource for documentation and software and example code.

Working with hardware development boards such as the Adafruit Trinket MO is

* K\) ELECTRONICS 101 /
A\ (

S easier if you have a basic knowledge of electronics concepts.

This presentation will not provide that knowledge. However, | have put together

l a separate presentation that does.

/) You can find my electronics overview presentation here:

Mu Editor Software

While an Integrated Development Environment is not required to work with
CircuitPython (any editor will work), Mu is a simple code editor that works with the
Adafruit CircuitPython boards. It has a built-in serial console, so you can get

immediate feedback from your board's serial output.

You can download it from It is available for the

Windows, Linux, MacOS, and Raspberry Pi operating systems.

Code with Mu: a simple Python editor for beginner programmers.

=3

\

/5

Mu Editor Software

The first time you start Mu, you will be prompted
to select your 'mode’ - you can change this later.
If you are going to use Mu for the Labs presented

here, you should select * g

Mu attempts to auto-detect your board, so plug in
your Trinket MO device via USB and make sure it
shows up as a drive named CIRCUITPY before
starting Mu.

Once your device is plugged in and Mu is started

you are ready to write some codel

@

Select Mode

Please select the desired mode then click "OK". Otherwise, click "Cancel”.

Adafruit Cire ython
Use CircuitPython on Adafruit's line of development hoards.

BBC n
Write ython for the BBC micro:bit.

Py

Create code using standard Python 3.

Could not find an attached Adafruit CircuitPython
device.

Python files for Adafruit CircuitPython devices
are stored on the device. Therefore, to edit these
files you need to have the device plugged in. Until

you plug in a device, Mu will use the directory
found here:

fUsers/ladyada/mu_code

...to store your code.

\

Serial Monitor

To view the serial output of the Trinket MO or any 00000000000

CircuitPython device you'll need a serial monitor.

1 import board, time

2 import adafruit_dotstar as dotstar

3 # Assign pins for Internal DotStar RGB LED

4 # DotStar Data Pin D7 is defined as board.APA102_SCK

In the Mu editor program there is a serial monitor built ===

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
main.py output:

in that can be launched by clicking the ‘Serial’ button.

Auto-reload is on. Simply save files over USB to run them or enter REPL to disable.
main.py output:

’ L[]
If you’re not using that software, there are other ways v Bors (COMBED

. . # USB Serial Device (COM9)
to monitor the serial output.

@ PuTTY Cenfiguration ? X
Category:
Look up the COM port number that your PC assigned T _Femiomloyar T ke
=) Terminal
. ° : Keyboard Sedalne 000000 S,Eef?*,
to the Trinket when you connected it. e v Jeow]
=~ Window (ORaw OTelnet ORlogin (OSSH @ Serial
gﬁﬁ:szg:e Load, save ?r delete a stored session
Use a terminal program that supports serial connections bl —
. . . e (Dt Senon 3
(like PuTTY) and configure it to connect to the COM Caa cond S
- Telnet 23??
ogin T |
port at 2600 baud. Lo =

Serial : .
Close window on exit:

(OAways (ONever (@ Only on clean exit

Open Cancel

When you connect the Trinket MO to your machine via USB is should open
a small drive named CIRCUITPY.

\\g Connecting the Trinket MO

This drive is where you will place your code and libraries.

It comes installed with a file and some basic library files in a

directory which are running demo code that will color cycle the on-board
l DotStar LED.

- BN -] - O X

Share

T w= > CIRCUITPY (E)

<l Documents ~ [Name '
D Music fseventsd
=l Pictures lib
N\ B Videos Windows 7 Driver

—_ CIRCUITPY () | .metadata_never_index

| Trashes
fseventsd

7 boot outixt
& main.py
1/ README.txt

lib
Windows 7 Driver
W Network

v

Mems 1 item selected 2.58 KB

Verify the Trinket MO Firmware Version

1

There are several versions of CircuitPython firmware available, and the library files are not g

compatible between major versions (e.g. 2.x, 3.x, 5.x, 6.x, etc.)

So, you should verify the version of CircuitPython firmware loaded on your Trinket MO
before you start working with it.

This is easily done by connecting it and opening a file named in the root of the
CIRCUITPY drive.

This file will contain a line of text that shows the CircuitPython version.
Note that my Trinket MO came shipped with version 3.1.1 which | want to upgrade.

. boot_out.txt - Notepad = O X

File Edit Format View Help
hdafruit circuitPython 3.1.1 on 2018-11-02; Adafruit Trinket M@ with samd21e18

Ln 1, Col 1 100% Windows (CRLF) UTF-8

To update the firmware is a fairly simple process.

§ Upgrading the Trinket MO Firmware

®* Download the firmware file from

O ® C(Click the ‘Download .UF2 Now’ button to download the latest stable firmware version.

Note: The latest stable version at the time of this writing is 5.3.1 which is what we will use in these Labs.

® Connect the Trinket MO which will open a USB drive called CIRCUITPY.

* Optionally back up any .py files and the lib directory to your machine.

l ® (Click the Reset button on the trinket twice.

®* Not like a mouse Double-click, but more like Click-pause-Click.
® You should see the DotStar LED turn green and a new disk drive appear called TRINKETBOOT.

®* Copy the .uf2 extension firmware file (e.g. adafruit-circuitpython-trinket_mO-en_US-5.3.1.uf2) to the
TRINKETBOOT drive.

®* The Red LED will flash then the TRINKETBOOT drive will disappear and the CIRCUITPY drive will reappear.

®* The main.py file and library files in lib may be deleted in this process.

/OTha’r’s it, the trinket is now running the new firmware for the Circuit Python version that you copied to it.

1

1

CircuitPython Library Files g

Whether you recently upgraded or just want to create a new project
with your current version of CircuitPython, you will want to download the

library files for the version you are working with.

Given the small amount of storage available it is important to only add

the libraries you need to your device.

You'll want the compiled library files available on your PC to allow you

to keep file size down and copy only what you need when you need it.

The library file bundle package is also a good source of example code

covering various tasks.

Downloading CircuitPython Library Files

You can find the library file bundle packages for recent versions of

CircuitPython here:
Choose the bundle that corresponds with your version and extract it.

Now just copy any file you need from the lib directory.

This bundle is built for use with CircuitPython 6.x.x. If you are using CircuitPython 6,
please download this bundle.

v « Trinket > adafruit-circuitpython-bundle-5.x-mpy-20201017
adafruit-circuitpython-bundle-6.x-mpy-20201017.zi :
pyt Py P * @ adafruit-circuitpython-t ~ [] Name

@ examples ia examples
Bundle Version 5.x o lib o lib
adafruit_ads1x15 &/ README.txt

This bundle is built for use with CircuitPython 5.x.x. If you are using CircuitPython 5, adafruit_airlift &/ VERSIONS.txt

please download this bundle.

adafruit_atecc

adafruit-circuitpython-bundle-5.x-mpy-20201017.zip £ adafruit_azureiot

o
°
o adafruit_apds9960
o
o
o

adafruit_bitmap_foni

Testing Trinket After Firmware Upgrade

When you upgrade the CircuitPython firmware it may delete your python
code and library files, or worse leave them in place and non-functional. So,
its best to clear any files and load new ones to test.

There are a few empty files that should be left on the CIRCUITPY drive since
they are there to prevent your PC from storing hidden files on the tiny drive.

These are:

The lib directory can remain but should be empty.

1
(

O

LN
\

i

Testing Trinket After Firmware Upgrade

Create a file named main.py using Mu or your

favorite editor.

In the main.py file add the code shown on the right.
This simple code will test that things are working.

This code should blink the small Red LED in the corner
of the board and print some text to serial output.

It will also cause the RBG LED in the center of the

board to light solid Green indicating that it is
running a program without error.

If the Red LED is not blinking or the RBG LED is not

solid Green, then there is a problem.

® Check that your indentation is consistent in main.py

(Python is strict about indentation)

import board
import digitalio
import time
Assign pin D13 (On-Board Red LED)
rled = digitalio.DigitalInOut (board.D13)
Set pin IO Direction
rled.direction = digitalio.Direction.OUTPUT
Main Loop
while True:
Serial Output
print ("Hello, CircuitPython!")
Set LED state to ON
rled.value = True
Pause for 1 second
time.sleep (1)
Set LED state to OFF
rled.value = False
Pause for 1 second

time.sleep (1)

\

P

Troubleshooting Problems

The Trinket MO and it’s CircuitPython
firmware will attempt to help you
troubleshoot problems.

The DotStar RGB LED will display a status
color and flash an error code as shown
on the right.

Error messages are sent via serial output.
So a serial monitor will allow you to see
detailed error messages that will help
you correct the problem.

Note: The Mu editor has a built-in serial
monitor that can interface with the Trinket
MO and display these messages.

The Trinket MO uses the DotStar RGB LED on the board to

indicate the status of CircuitPython.

Here is how to read it:

®* steady : main.py is running

® pulsing : main.py has finished or does not exist

®* steady YELLOW at start up (4+) Waiting for a reset to
indicate that it should start in safe mode

® pulsing YELLOW: In safe mode - (crash & restart)

® steady WHITE: REPL is running

® steady : boot.py is running

Colors with multiple flashes following indicate a Python
exception and then indicate the line number of the
error. The color of the first flash indicates the type
of error:

: IndentationError
® CYAN: SyntaxError
®* WHITE: NameError
® ORANGE: OSError

: ValueError
® YELLOW: other error
These are followed by flashes indicating the line
number. WHITE flashes are thousands' place, BLUE are
hundreds' place, YELLOW are tens' place, and CYAN are

one's place.

Integrating Circuits with the Trinket MO

So far, we haven't connected our Trinket to anything. To have it control
external circuits it must be integrated into those circuits. To do this we will

connect our external circuits to pins on the Trinket.

In addition to internal pins (such as those for the onboard LEDs), the Trinket

has ten external physical pins that we will use with our external circuits.

There are five general purpose input / output (GPIO) pins labeled O thru 4.
These each have different features that should be considered (e.g. digital,

analog, PWM, touch sensor, etc.)

The other five pins include a voltage input pin labeled ‘Bat’, two voltage
output pins labeled ‘USB’ (5V) and ‘3V’, a ground pin labeled ‘Gnd’, and a

reset pin labeled ‘Rst’.

Pinout of the Adafruit Trinket MO

This pinout diagram details which pins have which features.

DotStar LED
Power Serial PIN

B Paee ewrt
GND PIN Function @ B o o
Physical PIN Interrupt PIN ‘

USB C Flash Access
= onnector

Port PIN £ Control PIN Micro Type B

Analog PIN S 10E

—\,— PWM Pin

Port power group

- Bo e
[VEAT e |
D=
EY—— E}F fo o\ ¥ rass 12501 s2® SDA AIN16
Vo AL AING TOUCH MOSI enrs PAes -\ e i o—JfEW Pae2 ewnt2 DAC TOUCH AINe
3 A3 AINT TOUCH SCK RX 12508 ewt? PART AL\ e &\ AW PAGS Eemt® 12sMC s SCL MISO JAINTT

The total current of each port

power group EMCHITIMIIEL] 65mA

MAX per pin BLENY Connected to 5V USB Port
10mA, 7mA recommended MAX 5868mA

Positive voltage
N r':‘\’;aglfg‘;‘g for from the JST Batt jack

- https://www.adafruit.c roduct/3500 -
*adafrult 0 ps://v ru om/product/ S — GPIO pins rated for 3.3V BEEW 3V3 output from regulator

Eme——— TR TS0 Ver ¥ rev. connect them to 5V signals CUETES MAX 580mA

1

Working with CircuitPython on the Trinket MO

CircuitPython is based on . S0, most things that work with Python 3 will
work with CircuitPython.

CircuitPython libraries are separate files designed to work with CircuitPython code.

CircuitPython programs require a lot of information to run. CircuitPython is so simple
to use because most of this information is processed in the background and stored in
libraries. Some libraries are built into CircuitPython. Others are downloaded and

stored on your CIRCUITPY drive in a folder called

CircuitPython looks for a code file on the board to run in the root of the CIRCUITPY
drive. There are four options:) , and . CircuitPython
looks for those files, in that order, and then runs the first one it finds.

Any editor will work to modify the code. Whether you are editing the file directly
on the CIRCUITPY drive or copying a code file there, when you save /copy the file it
will be immediately run on the board since the board is looking for changes.

(

Python Quick Reference

Statements Blocks (/][()([“[(J trucesfile truc.py Modules/Names Imports integer, float, boolean, string, bytes CEELMNESY (= ordered sequences, fast index access, repeatable values

from monmod import noml,nom2 as fct int 783 0 -192 0D010 00642 OxF3 list [1,5,9] il Ao e [t
’

5 : : zero binary octal hexa 1.5 9 11, "y" 7.4 "mot "
—direct access to names, renaming with as float 9.23 0.0 -1.7e-6 ~tuple (1,5,9) Eidc Rl F ()
4

import monmod —gccess via monmod. noml ... bool True False x10 Non modifiable values (immutables) # expression with only comas — tuple

: 0 . A str bytes (ordered sequences of chars / bytes)
) _ & modules and packages searched in python path (cf sys . path) str "one\nTwo" Multiline string: < . o ! : 2 C—
parent statement : nnng\ Y\t Z = key containers, no «a priori order, fast key access, each key is unique

escaped riew line
statement block?2... (‘statement block executed only iti "I\ 'm’ 1\E2\t 3 dictionary i {"key":"value"} dict (a=3,b=4,k="v")
[y ! A onaitiona atemen AW 35 \ 1C ¥
: lf a condition is true escaped ' escaped tab (key/value associations) {1: "one" ,3:"three",2:"two",3.14:"n"}
bytes b"toto§xfg}775," collection set {"keyl", "key2"} {1; 9,3:0% setg
hexadecimal octal # immumhleb '3 # kevs=hashable values (base types, immutables...) frozenset immutable set c’mp/\')

ot st I
4" statements block statements block executed as long as Conditional Loop Statement [ROENEINNILE Seveenzd a2} Iterative Loop Statement

condition is true item of a container or iterator

while logical condition : Loop Control for var in sequence: h
—-|stm()mwzrs block break immediate exit —-l statements block i

continue next iteration
0 = Br Q. ~a' 0%
0\ initializations before the loop felse block for normal Go over sequence’s values
2 condition with a least one variable value (here i) loop et s = "Some text".inilializations before the loop
2 o \ Algo: cnt = 0 -
while 3 ’ i=100

\parent statement :
> statement block 1...

!

ion

lentat

ind

if logical condition :

next statement after block 1

e

#@ configure editor to insert 4 spaces in . Y
i o 3 & Can go with several ¢lif. elif... and only one
place of an indentation tab.) € E o) if age<=18:
final else. Only the block of first true g (e
= 5 " state="Kid
= VEUELIEEECELLTLELIE | condition is executed.

P inding of it I elif age>65:

ass@]ln@ut o b.mdullg of a name w ith a value # il var: state="Retired"

1) evaluation of right side expression value X " elEas

2) assignment in order with left side names if bool (x)==True: < if x: . o - o
x=1.2+8+sin (y) (1f bool(x)==False:& if not x: MG oty)

a=b=c=0 assignment to same value 7 : 7 . = =
y,2,£=9.2,~7.6,0 muliple assignments function name (identifier) Function Definition
’ ’ . ’ L 2 3

B BB Vil siap named parameters

i . - print ("found"”,cnt,"'e'") in the string.
a, *b=seq | unpacking of sequence in def fct(x,y,z): II print("v=", 3, "em :";x,",",y+4) Display loop on dict/set < loop on keys sequences
*a,b=seq [item and list "nrdocumentation""" ‘\\‘\ T‘ ’/4 use slices to loop on a subset of a sequence
X+=3 increment & x=x+3 —| # statements block, res computation, etc. items to display : literal values, variables, expressions Go O‘E Segnenccs }mdex
— AT —r—) 2 3 3 . o 7 F X
B-=g i ﬁ’f x 2 ; «lreturn res<— result value of the call. if no computed print opuons: - TGy Sem 1t~ 10 el\‘ lex (before / after
x=None «undefined » constant value / resuib to TemmEretura None osep=" " items separator, default space access 1tems around mdex (before / atter)

(del x removename x ")| ¢ parameters and all tend="\n" end of print, default new line i§§t=- [][':]I" 18)9,12,.23,. 4,173
Boolean Logic \'ariablc"s of this block exis.t only in the block and during the function o file=sys.stdout print to file, default standard output for idx in range (len(lst)): Algo: limit values greater
call (think of a “black box”) ” = " i m val = 1lst[idx] than 15, memorizing
s = input ("Instructions:") if val > 15: of lost values.
¢ input always returns a string, convert it to required type lost.append(val)

2 L 1st[idx] = 15
& (cf. boxed Conversions on the other side). I prtnt (rmodt® v, Tae, -donEs, TeEE)

0

[

loop, variable, assignment managed by for statement

& beware of infinite loops!

p variable

s s= z iz forfc'dn s
31 i # make condition variable change ! if ¢ == "e": Algo: count
print ("sum:",s) i=1 cnt = ent + 1 number of e

DA

¢ good habit : don't modify looy

o4

Comparisons : < > <= >= == I=))
(lmu/clzm results) < =2 = = Advanced: def fct (x,y, z, *args, a=3,b=5, **kwargs) :
a and b loecical and Poth simulta- *args variable positional arguments (— tuple), default values,
“neusly “*kwargs variable named arguments (—dict)
a or b locical or ©neor other

~ ST Yo 3

o) i oy v i o, P o4 ¢ 11 - H o 7 rar 3 - 02 .
o both a = = # floating numbers... approximated values angles in radians m Go snnulraneousl} over sequence's index and values:
Ll r = fet(3,i+2,2%*i) Function Call

@ pitfall : and and ox return value of a or Draseiaseol oo X N Operators: + — * / [/ % ** from math import sin,pi.. \for idx,val in enumerate (lst):)

of b (under shortcut evaluation). .s.[()/({}\'c ”“_‘ of (”“_ (llj.,'lll)‘l(ﬂl pe Priority (...) % R 4 a sin (pi/4) -0.707... Ve

= ensure that a and b are booleans. returned value parameter . integer + + remainder cos (2*pi/3)~-0.4999.. range ([start,] end [,step]) Integer Sequences
not a logical not # this is the use of function Advanced: @~ AT, X it 5+ iy sqrt (81)-9.0 v # start default 0, end not included in sequence, siep signed, default 1
True name with parentheses “sequence (333.3) %242, 0 Lag(e 2] ~&.8 range(5)—01234 range (2,12,3)-25811
palss JL True and False Coust:\nts/ \\\'hich does the call dict igié;i32;;?lfa3 » ;i:ir(](-§25)5;iiz range(3,8)—>34567 range (20, 5,-5)— 20 15 10

pow (4,3)~64.0 ol nath- cbatAck i ad EanAE: range (len (seq)) — sequence of index of values in seq
L % usual order of operations decimal. fractions, numpy, eic. (¢f. doc)) \2‘ range provides an immutable sequence of int constructed as needed

&

This next section will outline some CircuitPython projects using the Trinket MO.

\\g CIRCUITPYTHON TRINKET PROJECTS

These projects will be centered around two different physical circuit layouts with

O several CircuitPython code blocks for each.

— Lab HHV2020_04
¢ Blink the on-board Red LED
® Blink both external and on-board LEDs
* Fade external LED on/off using PWM
l ® Turn LEDs on/off using a Tactile Switch
— Lab HHV2020_05
® Blink the on-board DotStar RGB LED
® Color Cycle the on-board DotStar RGB LED
/) ® Use Touch Sensor to Control an external LED
p ® Use Touch Sensor to Color Change the on-board DotStar RGB LED

The Lab reference numbers refer to the BSidesDFW Hardware Hacking Village Videos
which can be accessed here:

LAB HHV2020_04

ADAFRUIT TRINKET LED CONTROL

Schematic

SW2

R R T G s Dr SR A S Oh R N

Pull Down Resistor R9 -~ - -
Ensures pin. D3.is.at a LOW value
CUntil' SW2 ‘brings it HIGH = =

Adafruit_Trinket_MQO

R9

F’._‘#.‘.{ ial: -
+3.3Y D7 — DotStar LED DATA ‘,,PESET} X Ry : ; 10K Ohms .
— DotStar LED CLOCK i

DB ‘ : TR '
S00mA Max = " i : : L] ’:\ GND{Common)}|

D2(PWM} /A1(in) D3{PWM)/A3(in} 35 : ‘ X
PACS/SCL/MISO PAO7 /Touch/SCK/RX | ; 5 AT] : ¢

/ 4 . . . R_Axial: LED-THT_5mm
D1/A0 { |0) *True Analog D4{PWM) /AL(in} . I ~

B L1
P&02/Touch PADG/Touch,/MOSI/TX :

Anade (+) Cathade (=)

PADB/SDA

DO(PWM)/42(in) D |2——(GND{Common)|

USB_+5Y BAT
500maA Max 3¥-6Y In

LAB HHV2020_04

ADAFRUIT TRINKET LED CONTROL

PhYSiCCII LG)’OU"' Strip Board Connection Details
;238 e HHEolz * Trinket — I17-21 and J17-21
=) ol=
'fgo Si8 o2 o =0 O | |C=OJCROO=C O 2 ® Resistor 100 Ohm - D19 and H19
2le | = olat| =10 Q|[CAOOIOROO gas | | L
o - (S| 50 .
’&'B y 53 (6F : e ”!:1" ®* Anode—-C19
slo 0 ROV oOOo000] |6 | Sy > -
PR Poaoooeootfdld | =l 9 —
glo ¥t alegBO% [| =|o =2 ¢ Wire—219 and VCC19
=0 Qo) _‘ b‘
:g %) o) ®* Wire—E18 and VCC18
&0 k : . q .
14 : ! Switch SPST 4 Pin
S MNEED : * PinA(1)-N14
== | * PinB(1)—014
* PinC(2)-N16

®* PinD(2)-Q16
® Wire —R16 and N21
® Wire —M14 and H20
® Resistor 10K Ohm —E20 and B20
®* Wire —A20 and VCC20

1201918171615 /v 10

22120 19 16 17 16 15 14
YOAC® 0000

Wire up a circuit as shown in the schematic and

physical layout.

Components:
* 1x Resistor 100 Ohm
* 1x Resistor 10K Ohm
* 1xLED 5mm
* 1x Tactile Switch SPST 4pin

\

LAB HHV2020_04

ADAFRUIT TRINKET LED CONTROL

Blink the on-board Red LED

This simple bit of code will blink the on-board Red LED. This is the same
code shown on the ‘Testing Trinket...” slide.

Let's walk through what it is doing:

Lines 1-3 import the library files we will use. These libraries are built into
CircuitPython so they will not be in the lib directory.

Line 5 assigns pin Digital-13 to an object named rled. This is the pin
associated with the Red LED.

Line 7 sets the 10 pin direction to OUTPUT
Line @ starts the main While loop that will run indefinitely.

Line 11 prints a string to the serial output. You can see this text output
with a serial monitor.

Line 13 sets the value of rled to True which turns ON the LED.
Line 15 pauses the program for 1 second
Line 17 sets the value of rled to False which turns OFF the LED.

Line 19 pauses the program for 1 second

This Code Is Available Here:

main.py
import board
import digitalio
import time

rled = digitalio.DigitalInOut(board.D13)

rled.direction = digitalio.Direction.OUTPUT

ksl
Wit

m

True:

print(“Hello, CircuitPython!")

time.sleep(1)

rled.value = False

time.sleep(1)

external LED. It will blink both the on-board and external LEDs

K Blink both external and on-board LEDs
\l This simple bit of code is like the previous code, adding an

® Let's walk through what it is doing:

import the library files we will use.

assigns pin D13 (on-board LED) to an object named rled.

assigns pin D4 (external LED) to an object named led4.
sets the 1O pin direction to OUTPUT for both pins

starts the main While loop that will run indefinitely.

@) sets the value of both LEDs to True which turns them ON.

prints strings and values to the serial output.

;) pauses the program for 1 second
repeats the set/print/pause turning the LEDs OFF.

This Code Is Available Here:

main.py
import board
import digitalio

import time

ADAFRUIT TRINKET LED CONTROL

LAB HHV2020_04

rled = digitalio.DigitalInOut(board.D13)

led4 = digitalio.DigitalInOut(board.D4)
rled.direction = digitalio.Direction.OUTPUT
led4.direction = digitalio.Direction.OUTPUT
while True:
rled.value = led4.value = True
print("rled Value: ", rled.value, "led4 Value: ", led4.value
time.sleep(1)
rled.value = led4.value = False
print(“"rled Value: ", rled.value, "led4 Value: ", led4.value

time.sleep(1)

LN
\

O

P

ADAFRUIT TRINKET LED CONTROL

Fade external LED on/off using PWM

In the previous code we defined a digital output pin for our LED.

In this code we define a PWM (Pulse Width Modulation) output pin
which mimics analog allowing the LED to be in between ON or OFF.

Let's walk through what's different:

®* We import the instead of the digitalio library.

®* We assign the led4 object to a which is output only so

we don’t set a direction.

®* We use

to fade the LED ON, the second iterates down to fade it OFF.

loops with a of 100. The first loop iterates up

® Instead of setting a value of True(HIGH) or False(LOW) we are
setting the which represents the percentage of time
the pin will be in the HIGH state. The duty_cycle is a 16-bit

number (O to 65535).

This Code Is Available Here:

main.py
import board
import pulseio
import time

ol
D
oo
B
I

pulseio.PWMOut(board.D4)

while True:

for 1 in range(109):

led4.duty cycle = int(i / 100 *

print(“"led4 Value: ", led4.duty
time.sleep(9.01)

for i in range(100, -1, -1):

led4.duty cycle = int(i / 100 *

print(“led4 Value: "

time.sleep(0.01)

LAB HHV2020_0;/

65535)

_cycle)

65535)

\

2

LAB HHV2020_04

ADAFRUIT TRINKET LED CONTROL

main.py

Turn LEDs on/off using a Tactile Switch import board /

import digitalio

import time
This code will read the state of a tactile switch (button) and use that)
rled = digitalio.DigitalInOut(board.D13)
to control the LEDs turning them on when pressed.

led4 = digitalio.DigitalInOut(board.D4)

We will use the button value in two ways, as a conditional check R i
swl = digitalio.DigitalInOut(board.D3)

and as a raw value to send to an object (an LED).

rled.direction = digitalio.Direction.OUTPUT
’ . . . led4.direction = digitalio.Direction.OUTPUT
Let) IOOk at fhe key Items In fhls COde: swl.direction = digitalio.Direction.INPUT
® Assign and pins as digital output whils drub:
. . e . Button = swl.value
® Assign pin as digital input
print("Button Value:", Button)
® Read in the value and print it to serial A s
® Use an if conditional statement to check if sw1 is True and set elad value — Touc
rled to True (LED ON) if it is, set it to False (LED OFF) S
rled.value = False
* Set to be equal to sw1 value (True or False, ON or OFF)
led4.value = Button

time.sleep(0.2)

This Code Is Available Here:

LAB HHV2020_05

> ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Schematic

D5 'RiD -

LERSTHTI S oD oo ZoROAREl
‘100 Chms -

Cathade [} L/‘l Anode {+)

Iz oqi

1c2

Adafruit_Trinket _MJ

% e

- |Bare_Wire_For_Touch }

S D7 — DotStar LEC DATA

+:l.-:' "a{

B — DatSt LED CLOCK
500mA Max PR

013 — Red LED

D2 r: P M } I,.-"',-‘-", il I'I n ::'
PADY/SCL/MISD

[Jlﬂ.:"”»’a‘_O{l 0 ::l *True Analog
P&OZ/Touch

DO(PWM}/A2(in)

PACB/SDA

USB_+5Y

R00mA Max

l':EE

SET)

D3(PWM) /A3({in)
PAD7/Touch /SCK/RX

D4(PWM) /Ak{in)
P&06,/Touch/MOSI/TX

GND

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Physical Layout

aag

l,' «l 4

¢

-y
I3, -

—

a1
‘>
=S
= (X
A
Y
(
L}

o)

<
| Pl AR
\\\. \

SR HefteNello) ol 118

— SMD1206 SMDOE03

\

HEIR A AR

Y
NN

A Y
N\

K)

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13

2202
® 22
o@® @ @O
m® @ @00 0OI0I0IC]
2
“u-)xu

Wire up a circuit as shown in the schematic and

physical layout.

Components:
* Tx Resistor 100 Ohm
* 1xLED 5mm
* 1x Bare Wire (for touch)

Strip Board Connection Details

Trinket — I17-21 and J17-21
Resistor 100 Ohm — K20 and 020
LED

® Anode — P20

® Cathode — 020
Wire — R20 and VCC20
Bare Wire — K19 and 019

LN
\

O

1
[7

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR
CircuitPython Library Files Needed

The code used in the following examples will require some library files that
are not built into CircuitPython.

You can find the library file bundle packages for recent versions of
CircuitPython here:

Download the bundle for the version you are working with (5.x) and extract it
in a directory on your PC.

Locate these two library files on your PC and copy them to the lib directory
on the CIRCUITPY drive:

main.py

Blink the on-board DotStar RGB LED

import board, time
import adafruit_dotstar as dotstar

This code will blink the on-board DotStar RGB LED. This

K\ ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR 4

/] i . A SN
uses some library files not included in CircuitPython.
O Le.l.’s Iook 01. The key ".ems in This COde: dot = dotstar.DotStar(board.APA1062 SCK, board.APA102 MOSI, 1, brightness=0.2)
" while True:
® Import library
® It calls the library
dot[@] = (255, @, ©)
® Assign object data pin APA102_SCK, clock pin time.sleep(0.5)
APA102_MOSI, pixel_num=1, and brightness=0.2 dot[e] = (e, 255, o)
time.sleep(8.5)
®* Note: The lib defines pins D7 & D8 as different names
O dot[@] = (@, @, 255)
® Set the Value of [0] to ' ' , then OFF time.sleep(e.5)
using a value list formatted (~,G,E) with values 0-255 dot[e] = (o, 6,)
time.sleep(1)
. ®* Pause briefly between color changes.

This Code Is Available Here:

\

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Color Cycle the on-board DotStar RGB LED Sy

import board, time

import adafruit_dotstar as dotstar

This code will Color Cycle the on-board DotStar RGB
LED.

dot = dotstar.DotStar(board.APA182 SCK, board.APA162 MOSI, 1, brightness=0.2)

Let’s look at the key items in this code:

def wheel(pos):

® Import library if (pos < @) or (pos > 255):
return (@, 0, 9)
* Assi bject data pin APA102_SCK, clock pin e 2
$S|gn o |ec ara pl — ’ cloc p return (int(pos * 3), int(255 - (pos*3)), ©)
APA102_MOSI, pixel_num=1, and brightness=0.2 el”pii"’i'isim):
return (int(255 - pos*3), @, int(pos*3))
® Define a function (pos) that will take an integer
. . pos -= 170
and return a list formatted (,G,5) with values 0-255 return (8, int(pos*3), int(255 - pos*3))
® Set [0] to the value that (i) returns L =10
while True

® Increment the var i keeping it between 0-255

dot[@] = wheel(i & 255)
i = (i+1) % 256
time.sleep(0.65)

® Pause briefly between color changes.

This Code Is Available Here:

This code will use a Capacitive Touch Sensor to control and

\\5 Use Touch Sensor to Control an external LED

external LED turning it on when touched.

Let’s look at the key items in this code:

® Import library

Assign object to analog pin AO

Read the value of

Use an if conditional statement to test for a touch.

O ® Given that the pin is analog it will register values all the

/7

time and we must set our test value higher than ambient values

If a touch is registered set to True turning it ON

Pause very briefly between loops.

This Code Is Available Here:

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

main.py
import board, time
import digitalio

import touchio

led5 = digitalio.DigitalInOut(board.D2)

touch = touchio.TouchIn(board.A®)

led5.direction = digitalio.Direction.OUTPUT

tval = touch.raw _value

print(“"Touch Value:™, tval)

if tval > 3500:
print(“"Touched! LED ON")
led5.value = True

else:

led5.value = False

time.sleep(8.2)

\

2

LAB HHV2020_05

ADAFRUIT DOTSTAR RGB LED AND TOUCH SENSOR

Use Touch Sensor to Color Change the DotStar RGB LED

This is the same code we used earlier to Color Cycle the

DotStar RGB LED with a slight modification to add touch.

The color will now only cycle when touched staying steady

at its current color when not touched.

Let’s look at the key items added to the existing code:
®* Added the library import

® Assign object to analog pin AO

®* Read the value of

® Use an if conditional statement to test for a touch and

increment the iteration variable i only if touched

® Pause very briefly between loops.

This Code Is Available Here:

main.py
import board, time
import adafruit dotstar as dotstar

import touchio

dot = dotstar.DotStar(board.APA102 SCK,

touch = touchio.TouchIn(board.A®)

def wheel(pos):
if (pos < @) or (pos > 255):
return (0, 9, ©)

if (pos < 85):

return (int(pos * 3), int(255 -

elif (pos < 170):

board.APA182 MOSI, 1, brightness=0.2)

(pos*3)), e)

pos -= 85
return (int(255 - pos*3), O, int(pos*3))
pos -= 176
return (0, int(pos*3), int(255 - pos*3))
i=90
while True:

tval = touch.raw_value
print("Touch Value:", tval)

dot[@] = wheel(i & 255)
if tval > 35@0:

print("Touched! Cycle LED Color™)

i= (i+1) % 256
time.sleep(0.05)

K\)
A\ THANK YOU

O

| hope you enjoyed this presentation and learned something from it.

-- @alt_bier

!

O
This Slide Deck —

/> Code —

